Computable scenes and structures in Films

Hari Sundaram and Shih-Fu Chang
Email: {sundaram, sfchang}@ee.columbia.edu

Dept. Of Electrical Engineering,
Columbia University,
New York, New York 10027.

Abstract

In this paper we present a computational scene model and also derive novel algorithms for computing audio and visual scenes and within-scene structures in films. We begin by mapping insights from film-making rules and experimental results from the psychology of audition into a computational scene model. We define a visual computable scene to be a segment that exhibits long-term consistency with regard to chromaticity and lighting. The computable audio scene is a segment that exhibits long-term consistency with respect to ambient sound. In our computational model, we derive four types of computable scenes that arise due to different kinds of audio and video scene boundary synchronizations. Central to the computational model is the notion of a causal, finite-memory viewer model. We segment the audio and video data separately. In each case we determine the degree of correlation of the most recent data in the memory with the past. The audio and video scene boundaries are determined using local maxima and minima respectively. We show how to exploit the local topology of an image sequence in conjunction with statistical tests, to determine dialogs. We also derive a simple algorithm to detect silences in audio.

An important feature of our work is to introduce semantic constraints on our computational model. This involves using silence and structural information to resolve ambiguities in certain situations. This results in computable scenes that are more consistent with human observations. The algorithms were tested on a difficult data set: three commercial films. We take the first hour of data from each of the three films. The best results: computational scene detection: 94% dialogue detection: 91% recall and 100% precision.
1. Introduction

This paper deals with the problem of computing scenes, within films by fusing information from audio and visual boundary detectors and visual structure. We also derive algorithms for detecting visual structures in the film. The problem is important for several reasons: (a) automatic scene segmentation is the first step towards greater semantic understanding of the film (b) breaking up the film into scenes will help in creating film summaries, thus enabling a non-linear navigation of the film. (c) the determination of visual structure within each scene (e.g. dialogues), will help in the process of visualizing each scene in the film summary. (d) in recent work, we have used these computable scenes in conjunction with the idea of visual complexity for generating visual skims [25].

There has been prior work on video scene segmentation using image data alone [7] [30]. In [30], the authors derive scene transition graphs to determine scene boundaries. However, cluster thresholds are difficult to set and must be manually tuned. In [7], the authors use an infinite, non-causal memory model to segment the video. We use this idea of memory in our current work, but in a finite, causal setting. Prior work [17] [19][22] concerning the problem of audio segmentation dealt with very short-term (100 ms) changes in a few features (e.g. energy, cepstra). This was done to classify the audio data into several predefined classes such as speech, music ambient sounds etc. They do not examine the possibility of using the long-term consistency found in the audio data for segmentation.

There has been some prior work on joint audio-visual segmentation [6] [10] [16]. In [6], the authors, denote a scene change point to occur at a frame, which exhibits: (a) a shot cut (b) an audio change and (c) a high motion change. However, these are short term phenomena, and they do not investigate long term correlations in either audio or video data, or the relationship of these detectors to the presence of structure (e.g. dialogs). Also, by focusing on synchronous audio visual events, they overlook the possibility of having single, unsynchronized, but semantically important audio or visual events.

There has been some prior work that analyzed film data [5] [12]. In [5], the authors use visual features alone to determine a logical story unit (LSU): a collection of temporally interrelated events. The LSU is detected using a single link clustering algorithm with cluster thresholds that change with the content of the cluster. The is done on the shots while
ignoring the duration. However, importantly, the duration of a scene can vary greatly with directorial style and semantics. In [12], the authors aim at automating the process of creating video abstracts, given a time budget, not segmentation. Neither of these works attempts to incorporate film-making constraints on the minimum number of shots in a scene, dialogs, or examines the inter-relationships between audio and video scene boundaries.

There has been prior work on structure detection [30], [31]. There, the authors begin with time-constrained clusters of shots and assign labels to each shot. Then, by analyzing the label sequence, they determine the presence of dialogue. This method critically depends upon cluster threshold parameters that need to be manually tuned.

There are constraints on what we see and hear in films, due to rules governing camera placement, continuity in lighting as well as due to the psychology of audition. In this paper, we develop notions of a video and audio computable scenes by making use of these constraints. A video computable scene (v-scene) exhibits long-term consistency with respect to two properties: (a) chromatic composition of the scene (b) lighting conditions. The audio computable scene (a-scene) exhibits long-term consistency with respect to the ambient audio. We derive four types of computable scenes (c-scene) that arise from different forms of synchronizations between a-scene and v-scene boundaries. We term these scenes as computable, since they can be reliably computed using low-level features alone. In this paper, we do not deal with the semantics of a scene. Instead, we focus on the idea of determining a computable scene, which we believe is the first step in deciphering the semantics of a scene.

Figure 1: computable scene detection overview.
We present algorithms for determining computable scenes and periodic structures that may exist within such scenes. We extend the memory model found in [7], to cover both audio and video data. Secondly, we make our memory model causal and finite. The model has two parameters: (a) an analysis window that stores the most recent data (the attention span) (b) the total amount of data (memory). In order to segment the data into audio scenes, we compute correlations amongst the audio features in the attention-span with the data in the rest of the memory. The video data comprises shot key-frames. The key-frames in the attention span are compared to the rest of the data in the memory to determine a coherence value. This value is derived from a color-histogram dissimilarity. The comparison takes also into account the relative shot length and the time separation between the two shots. We local maxima and minima respectively, to determine scene change points.

We introduce a topological framework that examines the local metric relationships between images for structure detection. Since structures (e.g. dialogs) are independent of the duration of the shots, we can detect them independent of the v-scene detection framework. We exploit specific local structure to compute a function that we term the periodic analysis transform. We test for significant dialogs using the standard Students t-test. The silence is detected via a threshold on the average energy; we also impose minimum duration constraints on the detector.

A key feature of our work is the idea of imposing semantic constraints on our computable scene model. This involves fusing (see figure 1) results from silence and structure detection algorithms. The computational model cannot disambiguate between these two cases involving two long and widely differing shots: (a) in a dialog sequence and (b) adjoining video scenes. However, human beings recognize the structure in the sequence and thus group the dialog shots together. Silence is useful in two contexts: (a) detecting the start of conversation by determining significant pauses [4] and (b) in English films, the transitions between computable scenes may involve silence. Our experiments show that the c-scene change detector and the structure detection algorithm works well.

The rest of this paper is organized as follows. In the next section, we formalize the definition of a computable scene. In section 3, we present our memory model. In sections 4 we discuss techniques to determine video scene boundaries. In section 5, we discuss our
topological framework for determining visual structure while in section 6, we discuss audio scene boundary detection. In section 7, we discuss our technique to merge information from audio, video scene boundaries, structure detection and silences. In sections 8 and 9 we present our experimental results and a discussion on possible model breakdowns. Finally, in section 10, we present our conclusions.

2. What is a computable scene?

In this section we shall define the notion of a computable scene. We begin with a few insights obtained from understanding the process of film-making and from the psychology of audition. We shall use these insights in creating our computational model of the scene.

2.1. Insights from Film Making Techniques

The line of interest is an imaginary line drawn by the director in the physical setting of a scene [3]. During the filming of the scene, all the cameras are placed on one side of this line (also referred to as the 180 degree rule). This is because we desire successive shots to maintain the spatial arrangements between the characters and other objects in the location\(^1\). The 180 degree rule has interesting implications on the computational model of the scene. Since all the cameras in the scene remain on the same side of the line in all the shots, there is an overlap in the field of view of the cameras (see figure 2). This implies that there will be a consistency to the chromatic composition and the lighting in all the shots. Film-makers also seek to maintain continuity in lighting amongst shots within the same physical location. This is done even when the shots are filmed over several days. This is because viewers perceive the change in lighting as indicative of the passage of time. For example, if two characters are shown talking in one shot, in daylight, the next shot cannot show them talking at the same location, at night.

\(^1\) This is so infrequent that directors who transgress the rule are noted in the film theory community. e.g. Alfred Hitchcock’s willful violation in a scene in his film *North by Northwest* [3].
2.2. The Psychology of Audition

The term *auditory scene analysis* was coined by Bregman in his seminal work on auditory organization [1]. In his psychological experiments on the process of audition, Bregman made many interesting observations, a few of which are reproduced below:

- Unrelated sounds seldom begin and end at the same time.

- A sequence of sounds from the same source seem to change its properties smoothly and gradually over a period of time. The auditory system will treat the sudden change in properties as the onset of a new sound.

- Changes that take place in an acoustic event will affect all components of the resulting sound in the same way and at the same time. For example, if we are walking away from the sound of a bell being struck repeatedly, the amplitude of all the harmonics will diminish gradually. At the same time, the harmonic relationships and common onset\(^2\) are unchanged.

Bregman also noted that different auditory cues (i.e. harmonicity, common-onset etc.) compete for the user’s attention and depending upon the context and the knowledge of the user, will result in different perceptions. Different computational models (e.g. [2]) have emerged in response to those experimental observations. While these models differ in their implementations and differ considerably in the physiological cues used, they focus on short-term grouping strategies of sound. Notably, Bregman’s observations indicate that long-term grouping strategies are also used by human beings (e.g. it is easy for us to identify a series of footsteps as coming from one source) to group sound.

2.3. The Computable Scene Model

The constraints imposed by production rules in film and the psychological process of hearing lead us to the following definition of audio and video scenes. A video scene is a continuous segment of visual data that shows *long-term*\(^3\) consistency with respect to two

\(^2\) Different sounds emerging from a single source begin at the same time.

\(^3\) Analysis of experimental data (one hour each, from five different films) indicates that for both the audio and the video scene, a minimum of 8 seconds is required to establish context. These scenes are in the usually same location (e.g. in a room, in the marketplace etc.) are and are typically 40~50 seconds long.
properties: (a) chromaticity and (b) lighting conditions, while an audio scene exhibits a long terms consistency with respect to ambient sound. We denote them to be computable since these properties can be reliably and automatically determined using low-level features present in the audio-visual data. The a-scene and the v-scenes represent elementary, homogeneous chunks of information. We define a computable scene (abbreviated as c-scene) in terms of the relationships between a-scene and v-scene boundaries. It is defined to be a segment between two consecutive, synchronized\(^4\) audio visual scenes. This results in four cases of interest\(^5\) (Table 1).

\(^4\) In films, audio and visual scene changes will not exactly occur at the same time, since this is disconcerting to the audience. They make the audio flow “over the cut” by a few seconds [15], [18].

\(^5\) Note that the figures for Ac_v, A-Vc and MM, in Table 1 show only one audio/visual change. Clearly, multiple changes are possible. We show only one change for the sake of figure clarity.

Table 1: The four types of c-scenes that exist between consecutive, synchronized audio-visual changes. solid circles: indicate audio scene boundaries, triangles indicate video scene boundaries

<table>
<thead>
<tr>
<th>Type</th>
<th>Abbr.</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure, no audio or visual change present.</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Audio changes consistent visual.</td>
<td>Ac-V</td>
<td></td>
</tr>
<tr>
<td>Video changes but consistent audio.</td>
<td>A-Vc</td>
<td></td>
</tr>
<tr>
<td>Mixed mode: contains unsynchronized audio and visual scene boundaries.</td>
<td>MM</td>
<td></td>
</tr>
</tbody>
</table>
We validated the computable scene definition, which appeared out of intuitive considerations, with actual film data. The data were from three one hour segments from three English language films. The definition for a scene works very well in many film segments. In most cases, the c-scenes are usually a collection of shots that are filmed in the same location and time and under similar lighting conditions (these are the P and the Ac-V scenes).

The A-Vc (consistent audio, visuals change) scenes seem to occur under two circumstances. In the first case, the camera placement rules discussed in section 2.1 are violated. These are montage sequences and are characterized by widely different visuals (differences in location, time of creation as well as lighting conditions) which create a unity of theme by manner in which they have been juxtaposed. Mtv videos are good examples of such scenes. The second case consists of a sequence of v-scenes that individually obey the camera placement rules (and hence each have consistent chromaticity and lighting). We refer to the second class as transient scenes. Typically, transient scenes can occur when the director wants to show the passage of time e.g. a scene showing a journey, characterized by consistent audio track.

Mixed mode (MM) scenes far less frequent, and can for example occur, when the director continues an audio theme well into the next v-scene, in order to establish a particular semantic feeling (joy/sadness etc.). Table 2 shows the c-scene type break-up from the first hour of the film Sense and Sensibility. There were 642 shots detected in the video segment. The statistics from the other films are similar. Clearly, c-scenes provide a high degree of abstraction, that will be extremely useful in generating video summaries. Note that while this paper focuses on computability, there are some implicit semantics in our model: the P and the Ac-V scenes, that represent c-scenes with consistent chromaticity and lighting are almost certainly scenes shot in the same location.

<table>
<thead>
<tr>
<th>C-scene breakup</th>
<th>Count</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure</td>
<td>33</td>
<td>65%</td>
</tr>
<tr>
<td>Ac-V</td>
<td>11</td>
<td>21%</td>
</tr>
<tr>
<td>A-Vc</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>MM</td>
<td>2</td>
<td>4%</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 2: c-scene breakup from the film Sense and Sensibility.

6 The English films: Sense and Sensibility, Pulp Fiction, Four Weddings and a Funeral.
7 In classic Russian montage, the sequence of shots are constructed from placing shots together that have no immediate similarity in meaning. For example, a shot of a couple may be followed by shots of two parrots kissing each other etc. The meaning is derived from the way the sequence is arranged.
3. The Memory Model

In order to segment data into scenes, we use a causal, first-in-first-out (FIFO) model of memory (figure 3). This model is derived in part from the idea of coherence [7]. In our model of a listener, two parameters are of interest: (a) memory: this is the net amount of information (T_m) with the viewer and (b) attention span: it is the most recent data (T_{as}) in the memory of the listener. This data is used by the listener to compare against the contents of the memory in order to decide if a scene change has occurred.

The work in [7] dealt with a non-causal, infinite memory model based on psychophysical principles, for video scene change detection. We use the same psychophysical principles to come up with a causal and finite memory model. Intuitively, causality and a finite memory will more faithfully mimic the human memory-model than an infinite model. We shall use this model for both audio and video scene change detection.

The next three sections deal with our core framework. In the next section we shall discuss our video scene boundary detection algorithm, and follow that with a section on structure detection. In section 6, we discuss audio scene boundary and silence detection. Finally in section 7, we discuss the challenging task of fusing the information obtained in the prior sections, to determine computable scene boundaries as well as detecting unsynchronized a-scene and v-scene boundaries.

4. Determining Video Scene Boundaries

In this section, we shall describe the algorithm for v-scene boundary detection. The algorithm is based on notions of recall and coherence. We model the v-scene as a contiguous segment of visual data that is chromatically coherent and also possesses similar lighting conditions. A v-scene boundary is said to occur when there is a change in the long-term chromaticity and lighting properties in the video. This stems from the film-making constraints discussed in section 2.1.
The framework that we propose, can conceptually work without having to detect shots, i.e. with raw frames alone. However, this would lead to an enormous increase in the computational complexity of the algorithm. Hence, the video stream is converted into a sequence of shots using a simple color and motion based shot boundary detection algorithm [9], that produces segments that have predictable motion and consistent chromaticity. A frame at a fixed time after the shot boundary is extracted and denoted to be the key-frame.

4.1. Recall

In our visual memory model, the data is in the form of key-frames of shots (figure 4) and each shot occupies a definite span of time. The model also allows for the most recent and the oldest shots to be partially present in the buffer. A point in time \(t_o\) is defined to be a scene transition boundary if the shots that come after that point in time, do not recall [7] the shots prior to that point. The idea of recall between two shots \(a\) and \(b\) is formalized as follows:

\[
R(a,b) = (1 - d(a,b)) \cdot f_a \cdot f_b \cdot (1 - \Delta t / T_m),
\]

where, \(R(a,b)\) is the recall between the two shots \(a, b\). \(d(a,b)\) is a \(L_1\) color-histogram based distance between the key-frames corresponding to the two shots, \(f_i\) is the ratio of the length of shot \(i\) to the memory size \((T_m)\). \(\Delta t\) is the time difference between the two shots. The formula for recall indicates that recall is proportional to the length of each of the shots. This is intuitive since if a shot is in memory for a long period of time it will be recalled more easily. Again, the recall between the two shots should decrease if they are further apart in time.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{(a) Each solid colored block represents a single shot. (b) each shot is broken up into “shot-lets” each at most \(\delta\) sec long. (c) the bracketed shots are present in the memory and the attention span. Note that sometimes, only fractions of shots are present in the memory.}
\end{figure}
We need to introduce the notion of a “shot-let.” A shot-let is a fraction of a shot, obtained by breaking individual shots into δ sec. long chunks but could be smaller due to shot boundary conditions. Each shot-let is associated with a single shot and its representative frame is the key-frame corresponding to the shot. In our experiments, we find that $\delta = 1$ sec. works well. Figure 4 shows how shot-lets are constructed. The formula for recall for shot-lets is identical to that for shots.

4.2. Computing Coherence

Coherence is easily defined using the definition of recall:

$$C(t_0) = \left(\sum_{a \in T_w} \sum_{b \in (T_w \setminus T'_w)} R(a, b) \right) / C_{max}(t_0)$$

where, $C(t_0)$ is the coherence across the boundary at t_0 and is just the sum of recall values between all pairs of shot-lets across the boundary at t_0. $C_{max}(t_0)$ is obtained by setting $d(a,b)=0$ in the formula for recall (equation \(<1>\)) and re-evaluating the numerator of equation \(<2>\). This normalization compensates for the different number of shots in the buffer at different instants of time. Note that shot-lets essentially fine-sample the coherence function while preserving shot boundaries.

4.3. Detecting Coherence minima

We detect the local coherence minima to determine if a v-scene boundary exists. To this end we need to define two windows W_0 and W_1. W_0 is a window of size $2k+1$ points and W_1 is a smaller window centered in W_0 of size $k+1$. To determine if a minima exists, we first check if a minima exists within W_1. If it does, we then need to impose conditions on this minima with respect to the coherence values in the larger window W_0 before we deem it to be a v-scene boundary.

First, we need to define three parameters relating to coherence values in W_0. α, β: they are respectively, the
difference between the maxima in the left and right half coherence windows and the minima value. δ: this is the difference between the minima and the global minima in W_0. Then, on the basis of these three values, we classify the minima into three categories (see figure 5):

1. **Strong**: $S \equiv \min(\alpha, \beta) > 0.3 \lor (\min(\alpha, \beta) > 0.1 \land \max(\alpha, \beta) > 0.4)$

2. **Normal**: $N \equiv (\max(\alpha, \beta) > 0.1) \land (\min(\alpha, \beta) > 0.05) \land (\delta < 0.1) \land (\neg S)$

3. **Weak**: $W' \equiv \max(\alpha, \beta) > 0.1 \land (\neg S) \land (\neg N)$

The two window technique helps us detect the weak minima cases. The strong case is a good indicator of a v-scene boundary between two highly chromatically dissimilar scenes. The weak case becomes important when we have a transition from a chromatically consistent scene to a scene which is not as consistent. These are the $P \rightarrow A-V_{c}$, or $A_{c-V} \rightarrow A-V_{c}$ (and vice-versa) type scene transitions (see Table 1). These categories become very useful when we are fusing information from a-scene boundary detection, v-scene boundary detection, silence detection and structure analysis.

5. Computing Visual Structure

In this section, we shall give an overview of some of the possible structures that exist in video sequences, an abstract representational technique and an algorithm for computing dialogs. The analysis that follows assumes that the video data has been segmented into shots and that each shot is represented by a single key-frame. We use a shot detector that uses color coherence and predictable motion to do shot boundary detection [9].

Structures (e.g. dialogs) contain important semantic information, and also provide complimentary information necessary to resolve v-scene boundaries. For example, in a dialog that contains very long shots (say 25 sec. each) showing very different backgrounds, the algorithm in section 4.2 will generate v-scene boundaries after each shot. Computationally, this situation is no different from two long shots from completely chromatically different (but adjacent) v-scenes. Human beings easily resolve this problem by not only inferring the semantics from the dialogue, but also by recognizing the dialog structure and grouping the shots contained in it into one semantic unit.
5.1. The Topology of Shots

Structures in video shot sequences, have an important property that the structure is independent of the individual shot lengths. It is the topology (i.e. the metric relationships between shots, independent of the duration of the shots) of the shots that uniquely characterizes the structure. For example, in a dialog sequence (A-B-A-B-..), the lengths of each shot will vary over the course of the dialog, and in general are related to: (a) the semantics of the dialog, (b) the presence of one speaker to who may dominate and (c) relationship dynamics between the speakers i.e. the dominant speaker may change over the course of the conversation. We now introduce the idea of the topological graph, central to all our structure detection algorithms.

5.2. The Topological graph

Let $S = \{I, d\}$ be the metric space induced by the set of all images I in the video sequence by the distance function d. The topological graph $T_G = \{V,E\}$ of a sequence of k images, is a fully connected graph, with the images at the vertices and where the edges specify the metric relationship between the images. The graph has associated with it, the topological matrix T_M, which is the k by k matrix where $T_M(i,j)$ contains the value of the edge connecting node i to node j in the graph. For an idealized dialog sequence of 6 images (A-B-A-B-A-B), with $d(A,B) = 1$, we would get the following topological matrix:

$$
\begin{bmatrix}
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
\end{bmatrix}
$$

The idea of the topological graph is distinct from the scene transition graph [30][31]. There, the authors cluster shots, and examine relationships between these clusters to determine scene change points as well as dialogs. Here, we are strictly interested in the topological property of a sequence of images and not in determining scene transitions.
5.3. Topological Structures

We investigate two structures in this work: the regular anchor and the dialog. However, for sake of brevity, we shall only present our dialog detection algorithm here. The details on the detection of regular anchors (computed using random permutations on the idealized topological matrix) and a more details on topological sequences can be found in [27].

Regular Anchors: A five image length regular anchor sequence is as follows: $A-I_1-A-I_2-A$, where, A is the anchor, and I_1 and I_2 can be arbitrary images. The idealized topological relationship is then: $d(A,I_1) = d(A,I_2) = 1$; and since we don’t care about the relationship between I_1 and I_2, we specify the edge (and the corresponding entry in the topological matrix) between the nodes representing I_1 and I_2 in T_G as -1. The extension to an odd\(^8\) (2N+1) sequence immediately follows. A three image regular anchor is shown in figure 6.

Dialogs: A six image length dialog $A-B-A-B-A-B$, is completely specified with the following idealized topological relationship: $d(A,B) = 1$.

5.4. Detecting Dialogs

A dialog has a specific local topological property: every 2\(^{nd}\) frame is alike while adjacent frames differ (figure 7). In the idealized topological matrix for the dialog (equation <3>), this appears as the 1\(^{st}\) off-diagonal being all ones, the 2\(^{nd}\) off-diagonal being all zeros and the 3\(^{rd}\) off-diagonal being all ones. Hence we need to define a periodic analysis transform to estimate existence of this pattern in a sequence of N shot key-frames. Let a_i where $i \in \{0,N-1\}$ be a time ordered sequence of images. Then:
\[\Delta(n) \triangleq 1 - \frac{1}{N} \sum_{j=0}^{N-1} d(o_j, o_{\text{mod}(i+j,N)}) , \quad <4> \]

where, \(\Delta(n) \) is the transform, \(d \) is the \(L_1 \) color-histogram based distance function, \(\text{mod} \) is the usual modulus function. The modulus function simply creates a periodic extension\(^9\) of the original input sequence. We shall use two statistical tests: the students t-test for the means and the F-test for the variances [13]. The F-test is used to determine the appropriate\(^10\) Student’s t-test. These tests are used to compare two series of numbers and determine if the two means and the variance differ significantly.

5.4.1. Detecting Dialogues

We can easily detect dialogues using the periodic analysis transform. Let us assume that we have a time-ordered sequence of \(N \) key-frames representing different shots in a scene. Then we do the following:

1. Compute the series \(\Delta(n) \).
2. Check if \(\Delta(2) > \Delta(1) \) and \(\Delta(2) > \Delta(3) \).
3. A dialogue is postulated to exist if one of two conditions in step 2 is at least significant at \(\alpha = 0.05 \) and the other one is at least significant at \(\alpha = 0.11 \). Note that \(\Delta(n) \) for each \(n \) is the mean of \(N \) numbers. We use the Student’s t-test to determine whether the two means are different in a statistically significant sense. Figure 7 illustrates this result.

5.4.2. The Sliding Window Algorithm

We use a sliding window algorithm to detect the presence of a dialog in the entire shot sequence for the video. Dialogs in films have an interesting rule associated with them: showing a meaningful conversation between \(m \) people requires at least \(3m \) shots [18]. Hence

\(^8\) We define the regular anchor topology to begin and end with the anchor image. Hence regular anchor sequences are always odd length sequences.

\(^9\) Defining the transform using a symmetric extension should improve our detector results.

\(^10\) There are two Student’s t-tests depending upon whether the variances differ significantly.

\(^11\) We are rejecting the null hypothesis that the two means are equal. We reject the hypothesis if we believe that the observed difference between the means occurred by chance with a probability less than \(\alpha \).
in a dialogue that shows two participants, this implies that we must have a minimum of six shots. As a consequence, we analyze six frames at a time starting with the first shot key-frame. The algorithm is as follows:

1. Run the dialogue detector on the current window.

2. If no dialogue is detected, keep shifting the window to the right by one key-frame to the immediate right until either a dialogue has been detected or we have reached the end of the video sequence.

3. If a dialogue has been detected, keep shifting the starting point of the window by two key-frames, until we no longer have a statistically significant dialog or if we reached the end of the video sequence.

4. Merge all the overlapping dialog sequences just detected.

5. Move the starting point of the window to be the first frame after the last frame of the last successful dialog.

The sliding window algorithm can sometimes “overshoot” and “undershoot.” i.e. it can include a frame before (or after) as being part of the dialog. These errors are eliminated by simply checking if the local dialog topological property holds at the boundaries. If not, we simply drop those frames. This results in an algorithm that generates statistically significant dialogs, with precise begin and end locations.

6. Determining Audio Scenes

In this section, we present a brief description (due to space constraints) of our computable audio scene boundary detection framework. Earlier work is to be found in [23][24], with a detailed analysis and new results in [26]. We model the scene as a collection of sound sources. We further assume that the scene is dominated by a few of these sources.
sources. These dominant sources are assumed to possess stationary properties that can be characterized using a few features. For example, if we are walking away from a tolling of a bell, the envelope of the energy of the sound of the bell will decay quadratically. A scene change is said to occur when the majority of the dominant sources in the sound change.

We model the audio data using three types of features: scalar sequences, vector sequences and single points (figure 8). Features ([14], [17], [21], [23], [31]) are extracted per section of the memory, and each section is T_{as} sec. long (the length of the attention span). We use six scalar features: (1) zero-crossing rate, (2) spectral flux, (3) cepstral flux, (4) energy, (5) energy variance (6) the low energy fraction. We determine three vector features: (1) cepstral vectors (2) multi-channel cochlear decomposition (3) mel-frequency cepstral coefficients. We also compute two point features: (1) spectral roll off point and (2) variance of the zero crossing rate. The point features are called so because, just one value is obtained for the duration of the entire attention span. All other features (except for the low-energy fraction and the energy variance, which are computed per second), are obtained per 100ms frame of the attention span. The cochlear decomposition was used because it was based on a psychophysical ear model. The cepstral features are known to be good discriminators [14]. All the other features were used for their ability to distinguish between speech and music [17], [21], [31]. The scalar sequence of feature values are modeled to consist of three parts: a trend (in order to incorporate Bregman’s constraints), a set of periodic components and noise.

6.1. Determining correlations

We determine correlations of the feature values stored in the attention span, with the data in the rest of the memory, to determine if a scene change point has occurred at t_o. At the end of this procedure, we have a sequence of distance values for each feature, at discrete time intervals of δ i.e. at $t \in \{t_o + p \delta\}$, where p is an integer. If a scene change was located at t_o, to the immediate left of the attention span (see figure 9) we would intuitively expect the distance values to increase rapidly as the data ought to be
dissimilar across scenes. We then compute β, the rate of increase of the distance at time $t = 0$. The local maxima of the distance increase rate estimate β, represents the scene change location point as estimated by that feature. Finally, we use a voting procedure amongst the features, to determine scene change location points.

6.2. Determining Silences

Silences become particularly useful in detecting c-scene boundaries where v-scene boundary occurs in a relatively silent section. There are two forms of silence in speech [21]: within phrase silences and between phrase silences. The within phrase silences are due to weak unvoiced sounds like /f/ or /th/ or weak voiced sounds such as /v/ or /m/. However, such silences are short usually 20–150 ms long. In [21], the author uses a two class classifier using Gaussian models for each pause class, to come up with a threshold of 165ms. However, others have used a threshold of 647 ms [4], for distinguishing significant pauses. In our experiments we detect silences greater than 500ms duration [26].

6.3. Determining weak a-scene boundaries

We now define the notion of a weak a-scene boundary. This is useful when determining the rules for c-scene detection. A weak a-scene boundary has a significant amount of silence at the boundary. We make further distinctions based on the amount of silence present.

- Compute the fraction of silence in a symmetric window (2W_{AS} sec. long) around the a-scene boundary. Let L_{AS} and R_{AS} be the left and right silence fractions. i.e. the amount of silence in the left and right windows. Using the computed values of L_{AS} and R_{AS}, we make the following distinctions:

 - **Pure Silence:** $F_{\phi} \equiv \min(L_{AS}, R_{AS}) = 1.$

 - **Silent:** $S \equiv \max(L_{AS}, R_{AS}) = 1.$

 - **Conversation:**

 $C_{\phi} \equiv \min(L_{AS}, R_{AS}) = 0 \land \max(L_{AS}, R_{AS}) > 0.125 \land (\neg S)$. This is just a test of significant silence in speech (ref. section 6.2).
7. Integrating Audio, Silence, Video and Structure

In this section we discuss our algorithm (figure 1 shows system overview) to integrate information from the a-scene, v-scene boundary detection algorithms with the results of the structure and silence detection algorithms. The computational scene model in Table 1, can generate c-scenes that run counter to grouping rules that human beings routinely use. Hence, the use of silence and structure detection imposes additional semantic constraints on the c-scene boundary detection algorithm.

7.1. Detecting c-scenes

There are three principal rules for detecting c-scenes:

1. We detect a c-scene whenever we can associate a v-scene with an a-scene that lies within a window of W_C sec.

2. We declare a c-scene to be present when normal v-scenes (see section 4.3) intersect silent regions.

3. We always associate a c-scene boundary with strong v-scene boundary locations.

The first rule is the synchronization rule for detecting c-scenes. The window W_C is necessary as film directors deliberately do not exactly align a-scene and v-scene boundaries; at a perceptual level, this causes a smoother transition between scenes. There are some exceptions to this rule, which we discuss later in the section. The second rule is important as many transitions between c-scenes are silent (e.g. the first scene ends in silence and then the second scene shows conversation, which also begins with silence). In such cases, audio scene boundaries may not exist within W_C sec. of the v-scene.

The third rule becomes necessary when there is no detectable a-scene boundary within W_C sec. of a strong v-scene boundary. Strong v-scene boundaries occur as transitions between two v-scenes that are long in duration, and which differ greatly in chromatic composition. Consider the following example. Alice and Bob are shown having conversation. Towards the end of the scene, the director introduces background music to emphasize a certain emotion. Then, the music is held over to the next scene for a few seconds to maintain continuity. Note that in this case, there is no a-scene boundary near the
v-scene boundary, nor is there a silent region near the v-scene boundary. The notation used in the figures in this section: silence: gray box, structure: patterned box, solid dot: a-scene boundary, equilateral triangle: v-scene, solid right angled triangle: weak v-scene. Now, we detail the steps in the algorithm.

Step 1: Remove v-scene or a-scene changes or silence within structured sequences (i.e. within dialogs and regular anchors) (figure 10.1). This is intuitive since human beings recognize and group structured sequences into one semantic unit.

Step 2: Place c-scene boundaries at strong (see section 4.3) v-scene boundaries. Remove all strong v-scenes from the list of v-scenes.

Step 3: If an a-scene lies within WC sec. of a v-scene, place a c-scene boundary at the v-scene location. However, there are three exceptions:

1. Do not associate a weak v-scene with a weak a-scene.

2. If the v-scene is weak, it must synchronize with a non-weak a-scene that is within WC/2 sec. i.e. we have tighter synchronization requirements for weak v-scenes.

3. Do not associate a normal v-scene with a weak a-scene marked as silent (see section 6.3).

Step 4: Non-weak (see section 4.3) v-scene boundaries (i.e. normal boundaries. Note that strong boundaries would have already been handled in step 2) that intersect silent regions are labeled as c-scene boundaries (figure 13). To determine whether a v-scene boundary intersects silence, we do the
following:

- Compute the fraction of silence in a symmetric window (2Wvs sec. long) around the
 v-scene boundary. Let L_{VS} and R_{VS} be the left and right silence fractions. i.e. the
 amount of data in the left and right windows that constitute silence.

- Then, declare a c-scene boundary if: $L_{VS} > 0.8 \lor R_{VS} > 0.8$

Now, we have a list of c-scenes, as well as lists of singleton video and audio scene
boundaries. The c-scenes are then post-processed to check if additional structure is present.

7.2. Post-processing c-scenes

Once we have detected all the c-scenes, we use a conservative post-processing rule to
eliminate false alarms. An irregular anchor shot in a semantic scene is a shot that the director
comes back to repeatedly, but not in a regular pattern, within the duration of the semantic
scene. This is known in film-making, as the “familiar-image” [18]. In figure 12, the first and
the last frame shows the irregular anchor that will appear sporadically within this scene. We
check if an anchor is present across adjacent scenes and merge them, if present. We make

![Figure 14: The first and last frame depict the irregular anchor.](image)

this rule transitive: i.e. if we have three c-scenes A, B, C, in succession, and if A and B have
share a regular anchor and B and C share a (possibly different) regular anchor, then c-scenes
A, B and C are merged into one c-scene.

The final list of v-scenes is obtained as follows: (a) all the v-scenes in the c-scenes
boundaries are also marked as v-scenes. (b) to this list we add all weak v-scenes if they have
been marked to be on the ends of dialogs or regular anchors.

8. Experimental Results

In this section we shall discuss the experimental results of our algorithms. The data used
to test our algorithms is complex: we have three one hour segments from three diverse films
in English: (a) *Sense and Sensibility* (b) *Pulp Fiction* and (c) *Four Weddings and a Funeral*. We begin with a section that explains how the labeling of the ground truth data was done. It is followed by sections on c-scene boundary detection and structure detection.

8.1. Labeling the Ground Truth

The audio and the video data were labeled separately (i.e. label audio without watching the video and label video without hearing the audio). This was because when we use both the audio and the video (i.e. normal viewing of the film) we tend to label scene boundaries based on the semantics of the scene. Only one person (the first author) labeled the data. Due to space constraints, we summarize our labeling procedure.

We attempt to label the audio and video data into coherent segments. From empirical observations of film data, it became apparent that for a group of shots to establish an independent context, it must last at least 8 sec. Hence all the v-scenes that we label must last more than 8 sec. We also set the minimum duration of an a-scene to be 8 sec. Then, the labeling criteria were as follows: (a) do not mark v-scene boundaries in the middle of dialogs or regular anchors, instead mark structure detection points at the beginning and end of the dialogs/regular anchors. (b) when encountering montage sequences (see section 2.3), only label the beginning and end of the montage sequence. (c) when encountering silences greater than 8 sec. label the beginning and ends of the silence. (d) when encountering speech in the presence of music, label the beginning and the end of the music segment. (e) do not mark speaker changes.

<table>
<thead>
<tr>
<th>Film</th>
<th>A-scenes</th>
<th>V-Scenes</th>
<th>C-Scenes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>Ac-V</td>
<td>A-Vc</td>
</tr>
<tr>
<td>Sense and Sensibility</td>
<td>69</td>
<td>57</td>
<td>33</td>
</tr>
<tr>
<td>Four weddings and a funeral</td>
<td>72</td>
<td>61</td>
<td>31</td>
</tr>
<tr>
<td>Pulp Fiction</td>
<td>45</td>
<td>40</td>
<td>25</td>
</tr>
</tbody>
</table>
Note, that an a-scene and v-scene are denoted to be synchronous if they less than 5 sec. apart.

8.2. Scene Change Detector Results

There are several parameters that we need to set. The memory and attention span sizes for the audio and video scene detection algorithm, and the synchronization parameter W_C, which we set to 5 sec (i.e. c-scene boundary is marked when the audio and video scenes are within 5 sec. of each other). For detecting video coherence, video we set the attention span to be 8 sec. (in accordance with our labeling rule) and the size of the memory is set to 24 sec. In general, increasing the memory size reduces false alarms, but increases misses.

In evaluating our results, we shall compare against c-scenes against the total number of shots in the film, since they are all candidate c-scene change points. Since it is important to correctly reject non-scene change points in addition to correctly detecting the scene change points, we shall evaluate the confusion matrix (i.e. hits, misses, false alarms and correct rejection). We now present results for c-scene and v-scene detection in Table 4 and Table 5. These results are for the entire duration of the film (each film is one hour long) and for all types of transitions.

Table 4: C-scene detector results. The non-scene change location points are the number of shots less the number of ground truth locations. Correct rejection is the number of correctly marked non-scene change points.

<table>
<thead>
<tr>
<th>Film</th>
<th>Hits</th>
<th>Misses</th>
<th>False Alarms</th>
<th>Correct Rejection</th>
<th>Shots</th>
<th>Non-change locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sense and Sensibility</td>
<td>48</td>
<td>3</td>
<td>21</td>
<td>570</td>
<td>642</td>
<td>591</td>
</tr>
<tr>
<td>Pulp Fiction</td>
<td>36</td>
<td>6</td>
<td>22</td>
<td>414</td>
<td>478</td>
<td>436</td>
</tr>
<tr>
<td>Four Weddings and a Funeral</td>
<td>41</td>
<td>12</td>
<td>18</td>
<td>665</td>
<td>736</td>
<td>683</td>
</tr>
</tbody>
</table>
Table 5: V-scene detector results for the three films.

<table>
<thead>
<tr>
<th>Film</th>
<th>Hits</th>
<th>Misses</th>
<th>False Alarms</th>
<th>Correct Rejection</th>
<th>Shots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sense and Sensibility</td>
<td>52</td>
<td>5</td>
<td>22</td>
<td>579</td>
<td>642</td>
</tr>
<tr>
<td>Pulp Fiction</td>
<td>38</td>
<td>2</td>
<td>20</td>
<td>458</td>
<td>478</td>
</tr>
<tr>
<td>Four Weddings and a Funeral</td>
<td>49</td>
<td>12</td>
<td>41</td>
<td>695</td>
<td>736</td>
</tr>
</tbody>
</table>

The result shows that the c-scene and the v-scene detectors work well, with a best c-scene detection performance of 94% detection for the film *Sense and Sensibility*, and a best case v-scene detection performance of 95% in the case of *Pulp Fiction*. There are two sources of error in our system: (a) uncertainty in the location of the audio labels due to human uncertainty and (b) misses in the video shot boundary detection algorithm. Shot misses cause the wrong key-frame to be present in the buffer, thus causing an error in the minima location. In the film *Four Weddings and a Funeral*, there is a sequence of four c-scenes that is missed due to very low chrominance difference between these scenes; it is likely that the labeler managed to distinguish them on the basis of a semantic grouping of the shots. A significant portion of the false alarms were cases that were correct from purely computational standpoint, but wrong semantically. We discuss them in section 9.

We now briefly compare our results with prior work. In [5], the authors segment film data on the basis of an adaptive shot clustering mechanism. They do not consider audio data or the duration of the shot while segmenting the video. There is an important synergy between audio and video that will not be examined in their work. Also, a semantically meaningful scene can also be a few shots (or even a single shot), but of a long duration. Hence, utilizing the duration of the shots, is important for segmentation. They also do not consider the role of structure (especially dialogs) while grouping shots into a scene. Prior work done in video scene segmentation used visual features alone [30], [7]. There, the authors focus on detecting scene boundaries for sitcoms (and other TV shows) and do not
consider films. However, since we expect the v-scenes in sitcoms to be mostly long, and coherent, we expect our combined audio visual detector to perform very well.

8.3. Structure Detection Results

In this section, we present our structure detection results. The statistical tests that are central to the dialogue detection algorithm make it almost parameter free. These test are used at the standard levels of significance ($\alpha = 0.05$). The sliding window size T_w (6 frames).

The results of the dialog detector (Table 5) show that it performs very well. The best result is a precision of 1.00 and recall of 0.91 for the film Sense and Sensibility. The misses are primarily due to misses by the shot-detection algorithm. Missed key-frames will cause a periodic sequence to appear less structured.

Table 6: The table shows the dialogue detector results for the three films. The columns are: Hits, Misses, False Alarms, Recall and Precision.

<table>
<thead>
<tr>
<th>Film</th>
<th>H</th>
<th>M</th>
<th>FA</th>
<th>Recall</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four Weddings and a Funeral</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>0.80</td>
<td>0.94</td>
</tr>
<tr>
<td>Pulp Fiction</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>Sense and Sensibility</td>
<td>28</td>
<td>3</td>
<td>0</td>
<td>0.91</td>
<td>1.00</td>
</tr>
</tbody>
</table>

There has been prior work [30][31] to determine dialogs in video sequences. The results there are also good, however, they need to set cluster threshold parameters. In contrast, our algorithm is almost parameter free.

9. Discussing C-Scene detector breakdowns

In this section we shall discuss three situations that arise in different film-making situations. In each instance, the 180 degree rule is adhered to and yet our assumption of chromatic consistency across shots is no longer valid.

1. **Sudden change of scale:** A sudden change of scale accompanied by a change in audio cannot be accounted for in our algorithm. This can happen in the following
case: a long shot12 shows two people with low amplitude ambient sound; then, there is a sudden close up of one person as he starts to speak. Detecting these breaks, requires understanding the semantics of the scene. While labeling, these types of scenes get overlooked by the labeler due to semantic grouping and hence are not labeled as change points.

2. **Widely differing backgrounds:** This can happen in two circumstances: (a) a right angled camera pan and (b) a set up involving two cameras. In the first case (Figure 13), the coherence model will show a false alarm for v-scene, and if accompanied by an a-scene change, this will be labeled as a c-scene break. In the second case we have two opposing cameras having no overlap in their field-of-view causing an apparent change in the background. This can happen for example, when the film shows one character inside the house, talking through a widow to another character who is standing outside.

These situations are problematic (incorrect boundary placement) only when they take place over long time scales (i.e. camera pans and stays there); Short term changes will be handled by our algorithm. Also, if these changes exhibit structure, (i.e. in a dialog or in a regular anchor), these false alarms will be eliminated. On way to overcome the slow-pan situation is to incorporate motion information into our decision framework. Clearly, our computational model makes simplifying assumptions concerning the chromatic consistency of a v-scene, even when film-makers adhere to the 180 degree rule.

10. **Conclusions**

In this paper we have presented a computational scene model for films. We show the existence of four different types of computable scenes, that arise due to different synchronizations between audio and video scene boundaries. The computational framework for audio and video scenes was derived from camera placement rules in film-making and from experimental observations on the psychology of audition. A v-scene exhibits long-

12The size (long/medium/close-up/extreme close-up) refers to the size of the objects in the scene relative to the size of the image.
term consistency with regard to lighting conditions and chromaticity of the scene. The a-scene shows long term consistency with respect to the ambient audio. We believe that the computable scene formulation is the first step towards deciphering the semantics of a semantic scene.

We showed how a causal, finite memory model formed the basis of our audio and video scene segmentation algorithm. In order to determine audio scene segments we determine correlations of the feature data in the attention span, with the rest of the memory. The maxima of the rate of increase of the correlation is used to determine scene change points. We use ideas of recall and coherence in our video segmentation algorithm. The algorithm works by determining the coherence amongst the shot-lets in the memory. A local minima criterion determines the scene change points.

We derived a periodic analysis transform based on the topological properties of the dialog to determine the periodic structure within a scene. We showed how one can use the Student’s t-test to detect the presence of statistically significant dialogues. We also showed how to determine silences in audio.

We derived semantic constraints on the computable scene model, and showed how to use the silence and structure information along with audio and video scene boundaries to resolve certain ambiguities. These ambiguities cannot be determined with using just the a-scene and the v-scene detection models.

The scene segmentation algorithms were tested on a difficult test data set: three hours from commercial films. They work well, giving a best c-scene detection result of 94%. The structure detection algorithm was tested on the same data set giving excellent results: 91% recall and 100% precision. We believe that the results are very good when we keep the following considerations in mind: (a) the data set is complex and (b) the shot cut detection algorithm had misses that introduced additional error.

There are several clear improvements possible to this work (a) the computational model for the detecting the video scene boundaries is limited, and needs to tightened in view of the model breakdowns discussed. One possible improvement is to do motion analysis on the video and prevent video scene breaks under smooth camera motion. (b) The v-scene
detection algorithm should dynamically adapt to the low-contrast scenarios to improve performance. (c) Since shots misses can cause errors, we are also looking into using entropy-based irregular sampling of the video data in addition to the key-frames extracted from our shot-segmentation algorithm. Current work includes generating video skims using these computable scenes [25].

11. Acknowledgement

The authors would like to thank Di Zhong for help with the shot boundary detection algorithm.

12. References

